题目内容

9、从编号为1,2,3,4的四个不同小球中取三个不同的小球放入编号为1,2,3的三个不同盒子,每个盒子放一球,则1号球不放一号盒子且3号球不放3号盒子的放法总数为(  )
分析:由题意知元素的限制条件比较多,要分类和分布解决,当选出的三个球是1、2、3或1、3、4时情况相同,当选到1、2、4或2、3、4时,情况也相同,根据分类和分步计数原理得到结果.
解答:解:由题意知元素的限制条件比较多,要分类解决,
当选出的三个球是1、2、3或1、3、4时,以前一组为例,
1号球在2号盒子里,2号和3号只有一种方法,
1号球在3号盒子里,2号和3号各有两种结果,
选1、2、3时共有3种结果,
选1、3、4时也有3种结果,
当选到1、2、4或2、3、4时,各有C21A22=4种结果,
由分类和分步计数原理得到共有3+3+4+4=14种结果,
故选C.
点评:对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网