题目内容
设O、A、B、C为平面上四个点,
=
,
=
,
=
,且
+
+
=
,
•
=
•
=
•
=-1,则|
|+|
|+|
|等于( )
| OA |
| a |
| OB |
| b |
| OC |
| c |
| a |
| b |
| c |
| 0 |
| a |
| b |
| b |
| c |
| c |
| a |
| a |
| b |
| c |
A、2
| ||
B、2
| ||
C、3
| ||
D、3
|
分析:把
+
+
=
直接平方、移项后平方,再利用
•
=
•
=
•
=-1,求出a2 =
2=2=
2,进而求得|
|=|
|=
|
|的值.
| a |
| b |
| c |
| 0 |
| a |
| b |
| b |
| c |
| c |
| a |
| b |
| c |
| a |
| b |
|
| c |
解答:解:∵
+
+
=
,
•
=
•
=
•
=-1,∴
2+
2+
2-6=0,
把
+
=-
两边平方得 a2+
2-2=
2,∴
2=2,∴|
|=
,a2+
2=4,
把
+
=-
两边平方得 a2+
2-2=
2,∴a2+2-2=
2,∴a2=
2=2,
∴|
|=|
|=
,则|
|+|
|+|
|=3
,
故选 C.
| a |
| b |
| c |
| 0 |
| a |
| b |
| b |
| c |
| c |
| a |
| a |
| b |
| c |
把
| a |
| b |
| c |
| b |
| c |
| c |
| c |
| 2 |
| b |
把
| a |
| c |
| b |
| c |
| b |
| b |
| b |
∴|
| a |
| b |
| 2 |
| a |
| b |
| c |
| 2 |
故选 C.
点评:本题考查向量的数量积的运算,向量的模的求法,关键是将条件进行转化变形.
练习册系列答案
相关题目