题目内容

(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.

(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;

(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.

              

解:(Ⅰ)解法1:以O为原点,ABOD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P),依题意得||MA|-|MB||=|PA|-|PB|=<|AB|=4.∴曲线C是以原点为中心,AB为焦点的双曲线.设实半轴长为a,虚半轴长为b,半焦距为c,则c=2,2a=2,∴a2=2,b2=c2a2=2.

∴曲线C的方程为.

解法2:同解法1建立平面直角坐标系,则依题意可得||MA|-|MB||=|PA|-|PB|<|AB|=4.∴曲线C是以原点为中心,AB为焦点的双曲线.设双曲线的方程为>0,b>0).

则由  解得a2=b2=2,∴曲线C的方程为

(Ⅱ)解法1:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理得(1-k2x2-4kx6=0.                      ①∵直线l与双曲线C相交于不同的两点EF∴     ∴直线l的斜率的取值范围为(-,-1)∪(-1,1)∪(1,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网