题目内容
(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.
解:(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(
),依题意得||MA|-|MB||=|PA|-|PB|=
<|AB|=4.∴曲线C是以原点为中心,A、B为焦点的双曲线.设实半轴长为a,虚半轴长为b,半焦距为c,则c=2,2a=2
,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为
.
解法2:同解法1建立平面直角坐标系,则依题意可得||MA|-|MB||=|PA|-|PB|<|AB|=4.∴曲线C是以原点为中心,A、B为焦点的双曲线.设双曲线的方程为
>0,b>0).
则由
解得a2=b2=2,∴曲线C的方程为![]()
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0. ①∵直线l与双曲线C相交于不同的两点E、F,![]()
∴ ![]()
∴直线l的斜率的取值范围为(-
,-1)∪(-1,1)∪(1,
)
练习册系列答案
相关题目