题目内容
4.A、B、C、D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=4,AB=2$\sqrt{3}$,则该球的表面积为32π.分析 画出几何体的图形,把A、B、C、D扩展为三棱柱,上下底面中心连线的中点与A的距离为球的半径,求出半径即可求解球的表面积.
解答
解:由题意画出几何体的图形如图,
把A、B、C、D扩展为三棱柱,上下底面中心连线的中点与A的距离
为球的半径,
AD=4,AB=2$\sqrt{3}$,△ABC是正三角形,所以AE=2,AO=2$\sqrt{2}$.
所求球的表面积为:4π(2$\sqrt{2}$)2=32π.
故答案为:32π.
点评 本题考查球的表面积的求法,球的内接体问题,考查空间想象能力以及计算能力.
练习册系列答案
相关题目
19.已知三棱锥S-ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )
| A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{2}}}{6}$ | D. | $\frac{{\sqrt{2}}}{12}$ |
9.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为( )
| A. | [0,$\frac{12}{5}$] | B. | (0,$\frac{12}{5}$) | C. | (1,3) | D. | [1,3] |
16.设x、y满足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥-1\\ x-2y≤2\end{array}\right.$,则z=x+y( )
| A. | 有最小值2,最大值3 | B. | 有最大值3,无最大值 | ||
| C. | 有最小值2,无最大值 | D. | 既无最小值,也无最大值 |