题目内容

用n个不同的实数a1,a2,…,an可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,…,ain,记bi=-ai1+2ai2-3ai3+…+(-1)nnam,i=1,2,3,…,n!.例如:用1,2,3可得数阵如下图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=-12+2×12-3×12=-24,那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120等于(    )

A.-3 600          B.1 800            C.-1 080                 D.-720

解析:在用1,2,3,4,5形成的数阵中,每一列各数之和均为(1+2+3+4+5)=360,b1+b2+…+b120=-360+2×360-3×360+4×360-5×360=-1 080.

答案:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网