题目内容
【题目】已知
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(1)若
,点
在椭圆
上,
、
分别为椭圆的两个焦点,求
的范围;
(2)若
过点
,射线
与椭圆
交于点
,四边形
能否为平行四边形?若能,求此时直线
斜率;若不能,说明理由.
【答案】(1)
;(2)
.
【解析】
(1)求得焦点坐标,设
,运用向量数量积的坐标表示,结合椭圆的范围,可得所求范围;
(2)设
,
的坐标分别为
,
,
,
,运用中点坐标公式和点差法,直线的斜率公式,结合平行四边形的性质,即可得到所求斜率.
解:(1)
时,椭圆
,两个焦点
,
,
,
,
设
,可得
,即
,
,
,
,
,
,
因为
,
所以
的范围是
;
(2)设
,
的坐标分别为
,
,
,
,可得
,
,
则
,两式相减可得
,
,即
,
故
,又设
,
,直线
,
即直线
的方程为
,
从而
,代入椭圆方程可得,
,
由
与
,联立得
,
若四边形
为平行四边形,那么
也是
的中点,
所以
,即
,整理可得
,
解得
,经检验满足题意,
所以当
时,四边形
为平行四边形.
【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000
,上下浮动不超过50
.这句话用数学语言来表达就是:每个面包的质量服从期望为1000
,标准差为50
的正态分布.
(1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000
的个数为
,求
的分布列和数学期望;
(2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468
.庞加莱购买的25个面包质量的统计数据(单位:
)
981 | 972 | 966 | 992 | 1010 | 1008 | 954 | 952 | 969 | 978 |
989 | 1001 | 1006 | 957 | 952 | 969 | 981 | 984 | 952 | 959 |
987 | 1006 | 1000 | 977 | 966 |
尽管上述数据都落在
上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由
附:
①若
,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量![]()
②若
,则
,
,
;
③通常把发生概率在0.05以下的事件称为小概率事件.
【题目】
年上半年,随着新冠肺炎疫情在全球蔓延,全球超过
个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为
年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型
,求得回归方程为
;
模型②:建立线性回归模型
.
(1)根据所给的统计量,求模型②中
关于
的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测
年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 |
|
|
|
|
参考公式:
,
;
.
参考数据:
,
,
,
,
,
.