题目内容
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且
,G是EF的中点.
(1)求证:平面AGC⊥平面BGC;
(2)求二面角B-AC-G的大小.
∴AG=BG=
∴AG2+BG2=AB2
∴AG⊥BG
又∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,
且BC⊥AB
∴BC⊥平面ABEF,
又∵AG?平面ABEF,
∴BC⊥AG
∵BC∩BG=B
∴AG⊥平面BGC
∵AG?平面AGC
∴平面AGC⊥平面BGC;
(2)作GM⊥AB于M,则M为AB中点,M为G的射影
作GH⊥AC于H,连接MH
则所求角∠GHM
Rt△ACB中,
∴
分析:(1)由G是矩形ABEF的边EF的中点,我们由已知中ABEF是矩形,且
(2)二面角B-AC-G的大小,先作出部署二面角的平面角,作GM⊥AB于M,则M为AB中点,M为G的射影,作GH⊥AC于H,连接MH,从而可知所求角∠GHM,进而可求.
点评:本题以面面垂直为载体,考查面面垂直的判定与行政,考查面面角,关键是正确运用定理,寻找线面垂直.
练习册系列答案
相关题目