题目内容
若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
对应的曲线中存在“自公切线”的有
[ ]
A.①③
B.①④
C.②③
D.②④
答案:C
练习册系列答案
相关题目
题目内容
若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
对应的曲线中存在“自公切线”的有
A.①③
B.①④
C.②③
D.②④