题目内容

已知|cosα|=cosα,|tanα|=-tanα,则α的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:由|cosα|=cosα,|tanα|=-tanα,可得α位于第四象限,于是可得α的取值范围.
解答:∵|cosα|=cosα,
∴α∈[2kπ-+2kπ](k∈Z)①
|tanα|=-tanα,
∴α∈(2kπ+,2kπ+π)∪(2kπ-,2kπ)(k∈Z)②
由①②可得α的取值范围是:
故答案为:
点评:本题考查三角函数值的符号,着重考查各种三角函数的符号与所对应的象限间的关系,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网