题目内容
【题目】设圆
的圆心为
,直线
过点
且与
轴不重合,交圆
于
,
两点,过点
作
的平行线交
于点
.
(1)求
的值;
(2)设点
的轨迹为曲线
,直线
与曲线
相交于
,
两点,与直线
相交于
点,试问在椭圆
上是否存在一定点
,使得
,
,
成等差数列(其中
,
,
分别指直线
,
,
的斜率).若存在,求出
点的坐标;若不存在,请说明理由.
【答案】(1)
(2)见证明
【解析】
(1)由
且
,可得
,进而得到![]()
,再由半径
,即可求解;
(2)由(1)知得
的方程,设直线
的方程为
,代入椭圆的方程,利用根与系数的关系和
,
,
成等差数列,求得![]()
,由对任意的
该等式恒成立,求得
,即可得到答案.
(1)因为圆
的圆心为
,所以
且
,
所以
,所以
,
所以
,
又因为圆
的半径为8,即
,
所以
.
(2)由(1)知,曲线
是以
,
为焦点的椭圆,且长轴长为8,
所以曲线
的方程为
,
设直线
的方程为
,
代入椭圆化简得
,
设
,
,
,则
,
,
所以![]()
![]()
,
因为
,
,
成等差数列,所以
,
因为
,所以![]()
,
化简得
,
对任意的
该等式恒成立,所以
,
所以存在点
,使得
,
,
成等差数列.
【题目】甲、乙两家物流公司都需要进行货物中转,由于业务量扩大,现向社会招聘货车司机,其日工资方案如下:甲公司,底薪80元,司机毎中转一车货物另计4元:乙公司无底薪,中转40车货物以内(含40车)的部分司机每车计6元,超出40车的部分司机每车计7元.假设同一物流公司的司机一填中转车数相同,现从这两家公司各随机选取一名货车司机,并分别记录其50天的中转车数,得到如下频数表:
甲公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 10 | 15 | 10 | 10 | 5 |
乙公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 5 | 10 | 10 | 20 | 5 |
(1)现从记录甲公司的50天货物中转车数中随机抽取3天的中转车数,求这3天中转车数都不小于40的概率;
(2)若将频率视为概率,回答下列两个问题:
①记乙公司货车司机日工资为X(单位:元),求X的分布列和数学期望E(X);
②小王打算到甲、乙两家物流公司中的一家应聘,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.
【题目】某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本3元,且以8元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂。根据以往100天的资料统计,得到如下需求量表。该蛋糕店一天制作了这款蛋糕
个,以
(单位:个,
,
)表示当天的市场需求量,
(单位:元)表示当天出售这款蛋糕获得的利润.
需求量/个 |
|
|
|
|
|
天数 | 15 | 25 | 30 | 20 | 10 |
(1)当
时,若
时获得的利润为
,
时获得的利润为
,试比较
和
的大小;
(2)当
时,根据上表,从利润
不少于570元的天数中,按需求量分层抽样抽取6天.
(i)求此时利润
关于市场需求量
的函数解析式,并求这6天中利润为650元的天数;
(ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为
,求随机变量
的分布列及数学期望.