题目内容
已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
,bn=f(
)+1,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn;
(3)若不等式an+1+an+2+…+a2n>
[log
(x+1)-log
(9x2-1)+1]对任意不小于2的正整数n都成立,求x的取值范围.
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
| 1 |
| f(n) |
| 1 |
| 2n |
(3)若不等式an+1+an+2+…+a2n>
| 4 |
| 35 |
| 1 |
| 2 |
| 1 |
| 2 |
(1)令x1=x2=0,f(0)=f(x0)+2f(0),f(x0)=-f(0)
令x1=1,x2=0,f(x0)=f(x0)+f(1)+f(0),f(1)=-f(0),∴f(x0)=f(1)
∵f(x)单调,∴x0=1
(2)f(1)=1,令x1=n,x2=1,f(n+1)=f(n)+f(1)+f(1)=f(n)+2
∴f(n+1)-f(n)=2(n∈N*),∴{f(n)}是以1为首项,2为公差的等差数列,∴f(n)=2n-1(n∈N*)
∴an=
Sn=a1a2+a2a3+…+anan+1
∵f(
)=f(
+
)=f(
)+f(
)+f(1)=2f(
)+1
∴2bn+1=2f(
)+2=f(
)+1=bn
∴bn=(
)n-1Tn=(
)0(
)1+(
)1(
)2+…+(
)n-1(
)n=
+(
)3+…+(
)2n-1=
=
[1-(
)n]
(3)令F(n)=an+1+an+2+…+a2nF(n+1)-F(n)=a2n+1+a2n+2-an+1=
+
-
>0
∴n≥2,n∈N*时,F(n)>F(n-1)>…>F(2)=
∴
>
[log
(x+1)-log
(9x2-1)+1]
即log
(x+1)-log
(9x2-1)<2?
解得-
<x<-
或
<x<1
令x1=1,x2=0,f(x0)=f(x0)+f(1)+f(0),f(1)=-f(0),∴f(x0)=f(1)
∵f(x)单调,∴x0=1
(2)f(1)=1,令x1=n,x2=1,f(n+1)=f(n)+f(1)+f(1)=f(n)+2
∴f(n+1)-f(n)=2(n∈N*),∴{f(n)}是以1为首项,2为公差的等差数列,∴f(n)=2n-1(n∈N*)
∴an=
| 1 |
| 2n-1 |
|
|
∵f(
| 1 |
| 2^ |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴2bn+1=2f(
| 1 |
| 2n+1 |
| 1 |
| 2n |
∴bn=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 4 |
(3)令F(n)=an+1+an+2+…+a2nF(n+1)-F(n)=a2n+1+a2n+2-an+1=
| 1 |
| 4n+1 |
| 1 |
| 4n+3 |
| 1 |
| 2n+1 |
∴n≥2,n∈N*时,F(n)>F(n-1)>…>F(2)=
| 12 |
| 35 |
∴
| 12 |
| 35 |
| 4 |
| 35 |
| 1 |
| 2 |
| 1 |
| 2 |
即log
| 1 |
| 2 |
| 1 |
| 2 |
|
| 5 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
练习册系列答案
相关题目