题目内容

如图2-2-9所示,AB、CD都是圆的弦,且AB∥CD,F为圆上一点,延长FD、AB交于点E.

图2-2-9

求证:AE·AC=AF·DE.

思路分析:连结BD,则BD=AC,即证AE·BD=AF·DE.

证明:连结BD,∵AB∥CD,

∴BD=AC.

∵A、B、D、F四点共圆,∴∠EBD=∠F.

∵∠E为△EBD和△EFA的公共角,

∴△EBD∽△EFA.∴.

,即AE·AC=AF·DE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网