题目内容
在斜△ABC中,| c |
| b |
| b |
| c |
| tanA |
| tanB |
| tanA |
| tanC |
分析:利用余弦定理化简条件可得3(b2+c2 )=4a2,化简要求的式子为
,把正弦定理、余弦定理代入
化简求得结果.
| sin2A |
| cosAsinBsinC |
化简求得结果.
解答:解:在斜△ABC中,
+
=8cosA,故
=8
,化简可得 3(b2+c2 )=4a2.
故
+
=
+
=
=
=
=
=
=
=6,
故答案为:6.
| c |
| b |
| b |
| c |
| c2+b2 |
| bc |
| c2+b2-a2 |
| 2bc |
故
| tanA |
| tanB |
| tanA |
| tanC |
| sinAcosB |
| cosAsinB |
| sinAcosC |
| cosAsinC |
| sinAcosBsinC+sinBsinAcosC |
| cosAsinBsinC |
| sinAsin(B+C) |
| cosAsinBsinC |
=
| sin2A |
| cosAsinBsinC |
| a2 | ||
|
| 2a2 |
| b2+c2- a2 |
| 2a2 | ||
|
故答案为:6.
点评:本题考查正弦定理、余弦定理的应用,式子的变形是解题的难点和关键.
练习册系列答案
相关题目