题目内容
已知递增的等差数列{an}满足a1=1,a3=a22-4,则an=______,Sn=______.
设等差数列{an}的公差为d,(d>0)
则1+2d=(1+d)2-4,即d2=4,解得d=2,或d=-2(舍去)
故可得an=1+2(n-1)=2n-1,
Sn=
=n2,
故答案为:2n-1;n2
则1+2d=(1+d)2-4,即d2=4,解得d=2,或d=-2(舍去)
故可得an=1+2(n-1)=2n-1,
Sn=
| n(1+2n-1) |
| 2 |
故答案为:2n-1;n2
练习册系列答案
相关题目