题目内容

将函数y=
-x2+2x+3
-
3
(x∈[0,2])的图象绕坐标原点逆时针旋转θ(θ为锐角),若所得曲线仍是一个函数的图象,则θ的最大值为______.
设f(x)=
-x2+2x+3
-
3
,根据二次函数的单调性,可得
精英家教网
函数在[0,1]上为增函数,在[1,2]上为减函数.
设函数在 x=0 处,切线斜率为k,则k=f'(0)
∵f'(x)=
1
2
(-x2 +2x)′
-x2+2x+3
=
-x  +1
-x2+2x+3

∴k=f'(0)=
3
3
=tan30°,可得切线的倾斜角为 30°,
因此,要使旋转后的图象仍为一个函数的图象,
旋转θ后的切线倾斜角最多为 90°,
也就是说,最大旋转角为 90°-30°=60°,即θ的最大值为60°
故答案为:60°
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网