题目内容
已知数列{an}是首项为1的等差数列,其公差d>0,且a3,a7+2,3a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+
+
+…+
<4(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+
| a2 |
| 2 |
| a3 |
| 22 |
| an |
| 2n-1 |
分析:(Ⅰ)依题意,(a7+2)2=a3•3a9,a1=1,可求得d=1,从而可求得数列{an}的通项公式;
(Ⅱ)设Sn=a1+
+
+…+
,则Sn=1+
+
+…+
,利用错位相减法可求得Sn=4-
,从而可证结论.
(Ⅱ)设Sn=a1+
| a2 |
| 2 |
| a3 |
| 22 |
| an |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| n+2 |
| 2n-1 |
解答:解:(Ⅰ)因为an=1+(n-1)d,则a3=1+2d,a7=1+6d,a9=1+8d.(3分)
由已知,(a7+2)2=a3•3a9,则(3+6d)2=3(1+2d)(1+8d),即2d2-d-1=0.(5分)
所以(2d+1)(d-1)=0.
因为d>0,则d=1,
故an=n.(6分)
(Ⅱ)设Sn=a1+
+
+…+
,则Sn=1+
+
+…+
,
则
Sn=
+
+…+
.(8分)
两式相减得,
Sn=1+
+
+
+…+
-
=
-
=2-
.
所以Sn=4-
.(12分)
因为
>0,则4-
<4,故a1+
+
+…+
<4.(13分)
由已知,(a7+2)2=a3•3a9,则(3+6d)2=3(1+2d)(1+8d),即2d2-d-1=0.(5分)
所以(2d+1)(d-1)=0.
因为d>0,则d=1,
故an=n.(6分)
(Ⅱ)设Sn=a1+
| a2 |
| 2 |
| a3 |
| 22 |
| an |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| n |
| 2n |
两式相减得,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n |
| 2n |
1-
| ||
1-
|
| n |
| 2n |
| n+2 |
| 2n |
所以Sn=4-
| n+2 |
| 2n-1 |
因为
| n+2 |
| 2n-1 |
| n+2 |
| 2n-1 |
| a2 |
| 2 |
| a3 |
| 22 |
| an |
| 2n-1 |
点评:本题考查数列求和,突出考查等差数列的通项公式与错位相减法求和的应用,考查推理与运算能力,属于中档题.
练习册系列答案
相关题目