ÌâÄ¿ÄÚÈÝ
ÒÑÖªÕýÏîÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=
£¨n¡ÊN*£©£®
£¨1£©Çóa1µÄÖµ¼°ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÖ¤£º
+
+
+¡+
£¼
£¨n¡ÊN*£©£»
£¨3£©ÊÇ·ñ´æÔÚ·ÇÁãÕûÊý¦Ë£¬Ê¹²»µÈʽ¦Ë£¨1-
£©£¨1-
£©¡£¨1-
£©cos
£¼
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
| an(an+2) |
| 4 |
£¨1£©Çóa1µÄÖµ¼°ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÖ¤£º
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 5 |
| 32 |
£¨3£©ÊÇ·ñ´æÔÚ·ÇÁãÕûÊý¦Ë£¬Ê¹²»µÈʽ¦Ë£¨1-
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| ¦Ðan+1 |
| 2 |
| 1 | ||
|
·ÖÎö£º£¨1£©ÀûÓõ±n=1ʱ£¬a1=S1=
£¬Çóa1µÄÖµ£¬¸ù¾Ýµ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤·¨Ò»¡¢¶þ£ºÏÈ·ÅËõ£¬ÔÙÁÑÏîÇóºÍ£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©Çó³öÊýÁÐ{bn}µÄͨÏ֤Ã÷Æäµ¥µ÷µÝÔö£¬¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬·ÖÀàÌÖÂÛÇó×îÖµ£¬¼´¿ÉÇó³ö¦ËµÄÖµ£®
| a1(a1+2) |
| 4 |
£¨2£©Ö¤·¨Ò»¡¢¶þ£ºÏÈ·ÅËõ£¬ÔÙÁÑÏîÇóºÍ£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©Çó³öÊýÁÐ{bn}µÄͨÏ֤Ã÷Æäµ¥µ÷µÝÔö£¬¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬·ÖÀàÌÖÂÛÇó×îÖµ£¬¼´¿ÉÇó³ö¦ËµÄÖµ£®
½â´ð£º£¨1£©½â£ºÓÉSn=
£®
µ±n=1ʱ£¬a1=S1=
£¬½âµÃa1=2»òa1=0£¨ÉáÈ¥£©£® ¡2·Ö
µ±n¡Ý2ʱ£¬ÓÉan=Sn-Sn-1=
-
¡àan2-an-12=2(an+an-1)£¬
¡ßan£¾0£¬¡àan+an-1¡Ù0£¬Ôòan-an-1=2£¬
¡à{an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬¹Êan=2n£® ¡4·Ö
£¨2£©Ö¤·¨Ò»£º¡ß
=
=
£¼
=
=
[
-
](n¡Ý2)£¬¡4·Ö
¡àµ±n¡Ý2ʱ£¬
+
+
+¡+
=
+
+
+¡+
£¼
+
[(
-
)+(
-
)+¡+
-
]=
+
[
-
]£¼
+
¡Á
=
£®¡7·Ö
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
=
£¼
ÏÔÈ»³ÉÁ¢£®¡8·Ö
Ö¤·¨¶þ£º¡ßn3-4n£¨n-1£©=n£¨n2-4n+4£©=n£¨n-2£©2¡Ý0£¬¡àn3¡Ý4n£¨n-1£©£®
¡à
=
=
¡Ü
=
(
-
)£¨n¡Ý2£©£®¡4·Ö
¡àµ±n¡Ý2ʱ£¬
+
+
+¡+
=
+
+
+¡+
¡Ü
+
[(1-
)+(
-
)+¡+(
-
)]=
+
(1-
)£¼
+
=
£®¡7·Ö
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
=
£¼
ÏÔÈ»³ÉÁ¢£®¡8·Ö
£¨3£©½â£ºÓÉan=2n£¬µÃcos
=cos(n+1)¦Ð=(-1)n+1£¬
Éèbn=
£¬Ôò²»µÈʽµÈ¼ÛÓÚ.
=
=
=
=
£¾1£¬¡9·Ö
¡ßbn£¾0£¬¡àbn+1£¾bn£¬ÊýÁÐ{bn}µ¥µ÷µÝÔö£®¡10·Ö
¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò
¢Ùµ±nÎªÆæÊýʱ£¬µÃ¦Ë£¼(bn)min=b1=
£» ¡11·Ö
¢Úµ±nΪżÊýʱ£¬µÃ-¦Ë£¼(bn)min=b2=
£¬¼´¦Ë£¾-
£®¡12·Ö
×ÛÉÏ£¬¦Ë¡Ê(-
£¬
)£¬ÓɦËÊÇ·ÇÁãÕûÊý£¬Öª´æÔÚ¦Ë=¡À1Âú×ãÌõ¼þ£®¡14·Ö
| an(an+2) |
| 4 |
µ±n=1ʱ£¬a1=S1=
| a1(a1+2) |
| 4 |
µ±n¡Ý2ʱ£¬ÓÉan=Sn-Sn-1=
| an(an+2) |
| 4 |
| an-1(an-1+2) |
| 4 |
¡àan2-an-12=2(an+an-1)£¬
¡ßan£¾0£¬¡àan+an-1¡Ù0£¬Ôòan-an-1=2£¬
¡à{an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬¹Êan=2n£® ¡4·Ö
£¨2£©Ö¤·¨Ò»£º¡ß
| 1 |
| an3 |
| 1 |
| (2n)3 |
| 1 |
| 8n•n2 |
| 1 |
| 8n(n2-1) |
| 1 |
| 8(n-1)n(n+1) |
| 1 |
| 16 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
¡àµ±n¡Ý2ʱ£¬
| 1 |
| a13 |
| 1 |
| a23 |
| 1 |
| a33 |
| 1 |
| an3 |
| 1 |
| 23 |
| 1 |
| 43 |
| 1 |
| 63 |
| 1 |
| (2n)3 |
| 1 |
| 23 |
| 1 |
| 16 |
| 1 |
| 1¡Á2 |
| 1 |
| 2¡Á3 |
| 1 |
| 2¡Á3 |
| 1 |
| 3¡Á4 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 2 |
| 5 |
| 32 |
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
| 1 |
| a13 |
| 1 |
| 8 |
| 5 |
| 32 |
Ö¤·¨¶þ£º¡ßn3-4n£¨n-1£©=n£¨n2-4n+4£©=n£¨n-2£©2¡Ý0£¬¡àn3¡Ý4n£¨n-1£©£®
¡à
| 1 |
| an3 |
| 1 |
| (2n)3 |
| 1 |
| 8n3 |
| 1 |
| 32n(n-1) |
| 1 |
| 32 |
| 1 |
| n-1 |
| 1 |
| n |
¡àµ±n¡Ý2ʱ£¬
| 1 |
| a13 |
| 1 |
| a23 |
| 1 |
| a33 |
| 1 |
| an3 |
| 1 |
| 23 |
| 1 |
| 43 |
| 1 |
| 63 |
| 1 |
| (2n)3 |
| 1 |
| 23 |
| 1 |
| 32 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 8 |
| 1 |
| 32 |
| 1 |
| n |
| 1 |
| 8 |
| 1 |
| 32 |
| 5 |
| 32 |
µ±n=1ʱ£¬²»µÈʽ×ó±ß=
| 1 |
| a13 |
| 1 |
| 8 |
| 5 |
| 32 |
£¨3£©½â£ºÓÉan=2n£¬µÃcos
| ¦Ðan+1 |
| 2 |
Éèbn=
| 1 | ||||||||
(1-
|
| bn+1 |
| bn |
| ||||
(1-
|
| ||||
(1-
|
| 2n+2 | ||
|
| ||
|
¡ßbn£¾0£¬¡àbn+1£¾bn£¬ÊýÁÐ{bn}µ¥µ÷µÝÔö£®¡10·Ö
¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ£¨-1£©n+1¦Ë£¼bn¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò
¢Ùµ±nÎªÆæÊýʱ£¬µÃ¦Ë£¼(bn)min=b1=
2
| ||
| 3 |
¢Úµ±nΪżÊýʱ£¬µÃ-¦Ë£¼(bn)min=b2=
8
| ||
| 15 |
8
| ||
| 15 |
×ÛÉÏ£¬¦Ë¡Ê(-
8
| ||
| 18 |
2
| ||
| 3 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éÊýÁÐÓë²»µÈʽµÄÁªÏµ£¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬ȷ¶¨ÊýÁеÄͨÏÕýÈ··ÅËõ£¬ºÏÀíÔËÓÃÇóºÍ¹«Ê½Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿