题目内容
{an}是等差数列,若a1,a3,a4是等比数列{bn}的连续三项,则{bn}的公比为______.
∵{an}是等差数列,设公差为d,则a3=a1+2d,a4=a1+3d
∵a1,a3,a4是等比数列{bn}的连续三项,
∴a32=a1×a4,
即(a1+2d)2=a1(a1+3d),
解得a1=-4d,或d=0
当a1=-4d时,{bn}的公比q=
=
=
当d=0时,{bn}的公比q=
=1
∴{bn}的公比为
或1
故答案为:
或1
∵a1,a3,a4是等比数列{bn}的连续三项,
∴a32=a1×a4,
即(a1+2d)2=a1(a1+3d),
解得a1=-4d,或d=0
当a1=-4d时,{bn}的公比q=
| a3 |
| a1 |
a1-
| ||
| a1 |
| 1 |
| 2 |
当d=0时,{bn}的公比q=
| a3 |
| a1 |
∴{bn}的公比为
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
练习册系列答案
相关题目