题目内容
10.设n∈N,求证:(1)$\sqrt{n+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{n}}$<$\sqrt{n}$;
(2)$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.
分析 (1)直接利用数学归纳法证明问题的步骤,证明不等式即可.
(2)利用$\frac{2n-1}{2n+1}$<$\frac{2n-1}{2n}$<$\frac{2n}{2n+1}$,即可证明不等式
解答 证明:(1)①n=1时,结论成立;
②假设n=k时,结论成立,即$\sqrt{k+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$<$\sqrt{k}$,
n=k+1时,$\sqrt{k+1}$-1+$\frac{1}{2\sqrt{k+1}}$<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$+$\frac{1}{2\sqrt{k+1}}$<$\sqrt{k}$+$\frac{1}{2\sqrt{k+1}}$,
∵$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$+$\frac{1}{2\sqrt{k+1}}$<$\sqrt{k}$+$\frac{1}{2\sqrt{k+1}}$<$\frac{2\sqrt{k(k+1)}+1}{2\sqrt{k+1}}$<$\frac{k+k+1+1}{2\sqrt{k+1}}$=$\sqrt{k+1}$,
$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{k}}$+$\frac{1}{2\sqrt{k+1}}$>$\sqrt{k+1}$-1+$\frac{1}{2\sqrt{k+1}}$=$\frac{2k+2+1}{2\sqrt{k+1}}$-1>$\sqrt{k+2}$-1,
∴当n=k+1时,不等式也成立.
由①②可知,不等式成立;
(2)∵4n2-1<4n2,即(2n+1)(2n-1)<(2n)2.即$\frac{2n-1}{2n}$<$\frac{2n}{2n+1}$,
∴($\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$)2<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$×$\frac{2}{3}$×$\frac{4}{5}$×…×$\frac{2n}{2n+1}$=$\frac{1}{2n+1}$,
∴$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$(n∈N*).
$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$>$\frac{1}{3}$×$\frac{3}{5}$×…×$\frac{2n-1}{2n+1}$=$\frac{1}{2n+1}$,
∴$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.
点评 本题考查数学归纳法证明含自然数n的表达式的证明方法,注意n=k+1的证明时,必须用上假设.利用放缩法证明的关键是放大与缩小,不能随便放缩.
| A. | k-2 | B. | 2-k | C. | 1-k | D. | -k-1 |