题目内容
已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若
=λ
,
=μ
,
∈[
,
],则μ的取值范围是( )
| FA |
| AP |
| BF |
| FA |
| λ |
| μ |
| 1 |
| 4 |
| 1 |
| 2 |
A.[1,
| B.[
| C.[2,3] | D.[3,4] |
设P(0,y0),B(x2,y2),A(x1,y1),由
=λ
,
=μ
得(x1-
,y1)=λ (-x1,y0-y1),(
-x2,-y2)=μ (x1-
,y1)
∴x1-
=-λ x1,y1=λ(y0-y1),
-x2=μ (x1-
),y2=-μy1,
∴y22=μ2y12,
∵y12=2px1,y22=2px2.
∴x2=μ2x1,
代入
-x2=μ (x1-
)
得
-μ2x1=μ(x1-
),即
(1+μ )=x1μ (1+μ )
整理,得x1=
代入x1-
=-λ x1,得
-
=
∴
=1-
∵
∈[
,
]
∴
∈[
,
]
∴μ∈[
,2]
故选 B
| FA |
| AP |
| BF |
| FA |
得(x1-
| p |
| 2 |
| p |
| 2 |
| p |
| 2 |
∴x1-
| p |
| 2 |
| p |
| 2 |
| p |
| 2 |
∴y22=μ2y12,
∵y12=2px1,y22=2px2.
∴x2=μ2x1,
代入
| p |
| 2 |
| p |
| 2 |
得
| p |
| 2 |
| p |
| 2 |
| p |
| 2 |
整理,得x1=
| p |
| 2μ |
代入x1-
| p |
| 2 |
| p |
| 2μ |
| p |
| 2 |
| -λ p |
| 2μ |
∴
| 1 |
| μ |
| λ |
| μ |
∵
| λ |
| μ |
| 1 |
| 4 |
| 1 |
| 2 |
∴
| 1 |
| μ |
| 1 |
| 2 |
| 3 |
| 4 |
∴μ∈[
| 4 |
| 3 |
故选 B
练习册系列答案
相关题目