题目内容

(2012•淮北二模)已知C为线段AB上一点,P为直线AB外一点,I为PC上一点,满足|
PA
|-|
PB
|=4,|
PA
-
PB
|=10,
PA
PC
|
PA
|
=
PB
PC
|
PB
|
,且
BI
=
BA
+λ(
AC
|
AC
|
+
AP
|
AP
|
),(λ>0),则
BI
BA
|
BA|
的值为(  )
分析:根据
PA
PC
|
PA
|
=
PB
PC
|
PB
|
表示|
PC
|cos∠APC=|
PC
||cos∠CPB,即∠APC=∠CPB,且
BI
=
BA
+λ(
AC
|
AC
|
+
AP
|
AP
|
),(λ>0),表示I在∠BAP的角平分线上,
即I是三角形ABP的内心,余下的问题就比较简单.
解答:解:由|
PA
-
PB
|=10,可得|AB|=10.
PA
PC
|P
A
|
=
PB
PC
|P
B
|
,可得|
PC
|cos∠APC=|
PC
||cos∠CPB,即∠APC=∠CPB,即PC为∠APB的角平分线.
由于I为PC上一点,
BI
=
BA
+λ(
AC
|
AC
|
+
AP
|
AP
|
),(λ>0),表示点I在∠CAP的角平分线上,即I是三角形ABP的内心.
而要求的式子 
BI
BA
|B
A|
 表示的是
BI
AB
上的投影长度.
过I做IK垂直于AB于K,则由圆的切线性质和题意可得|AK|-|BK|=4,|AK|+|BK|=10,解得|BK|=3即所求,
故选C.
点评:本题考查向量在几何中的应用,本题解题的关键是正确理解条件中所给的几个关系式,注意把条件转化成我们所熟悉的条件,本题是一个比较好的题目,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网