题目内容
已知函数f(x)=x3+3bx+2c,若函数f(x)的一个极值点落在x轴上,求b3+c2的值.
答案:
解析:
提示:
解析:
|
解: 由题意,可设f(x)的极值点为(x0,0), 则 ∴由②得x02=-b. 代入①得-bx0+3bx0+2c=0, 即2bx0+2c=0. ∴(bx0)2=c2,即b2(-b)=c2,即b3+c2=0. 解析:极值点落在x轴上,说明若x0是极值点则 |
提示:
|
若可导函数y=f(x)在点(a,b)处取得极值,则满足 |
练习册系列答案
相关题目