题目内容
已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,n∈N*.
(1)求数列{bn}的通项公式;
(2)设cn=b2n-1b2n+1,求使得
ci<
对一切n∈N*都成立的最小正整数m;
(3)设数列{bn}的前n和为Sn,Tn=S2n-Sn,试比较Tn+1与Tn的大小.
(1)求数列{bn}的通项公式;
(2)设cn=b2n-1b2n+1,求使得
| n |
| i=1 |
| m |
| 10 |
(3)设数列{bn}的前n和为Sn,Tn=S2n-Sn,试比较Tn+1与Tn的大小.
分析:(1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1,所以bn-bn+1=bnbn+1,从而得
-
=1,由此能求出数列{bn}的通项公式.
(2)由cn=b2n-1b2n+1=
(
-
),知
ci=c1+c2+…+cn=
(1-
),要使
(1-
)<
对一切n∈N*都成立,必须并且只须满足
≤
,由此能求出满足要求的最小正整数m.
(3)由Sn=1+
+
+…+
,知Tn=S2n-Sn=
+
+…+
.由此利用作差法能够比较Tn+1与Tn的大小.
| 1 |
| bn+1 |
| 1 |
| bn |
(2)由cn=b2n-1b2n+1=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| i=1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| m |
| 10 |
| 1 |
| 2 |
| m |
| 10 |
(3)由Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
解答:解:(1)由bn=an-1,
得an=bn+1,
代入an-1=an(an+1-1),
得bn=(bn+1)bn+1,
整理得bn-bn+1=bnbn+1,---(2分)
∵bn≠0否则an=1,与a1=2矛盾,
从而得
-
=1,-(4分)
∵b1=a1-1=1,
∴数列{
}是首项为1,公差为1的等差数列
∴
=n,
即bn=
.-(5分)
(2)∵cn=b2n-1b2n+1=
=
(
-
)--(6分)
∴
ci=c1+c2+…+cn
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)--(8分)
∴要使
(1-
)<
对一切n∈N*都成立,
必须并且只须满足
≤
,即m≥5,
∴满足要求的最小正整数m为5.--(10分)
(3)∵Sn=1+
+
+…+
∴Tn=S2n-Sn=1+
+
+…+
+
+…
-(1+
+
+…+
)
=
+
+…+
--(12分)
又∵Tn+1-Tn=
+
+…+
-(
+
+…+
)
=
+
-
=
-
=
>0
∴Tn+1>Tn.----(14分)
得an=bn+1,
代入an-1=an(an+1-1),
得bn=(bn+1)bn+1,
整理得bn-bn+1=bnbn+1,---(2分)
∵bn≠0否则an=1,与a1=2矛盾,
从而得
| 1 |
| bn+1 |
| 1 |
| bn |
∵b1=a1-1=1,
∴数列{
| 1 |
| bn |
∴
| 1 |
| bn |
即bn=
| 1 |
| n |
(2)∵cn=b2n-1b2n+1=
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| n |
| i=1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴要使
| 1 |
| 2 |
| 1 |
| 2n+1 |
| m |
| 10 |
必须并且只须满足
| 1 |
| 2 |
| m |
| 10 |
∴满足要求的最小正整数m为5.--(10分)
(3)∵Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
∴Tn=S2n-Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
又∵Tn+1-Tn=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| (2n+1)(2n+2) |
∴Tn+1>Tn.----(14分)
点评:本题首先考查等差数列的基本量、通项,结合含两个变量的不等式的处理问题.对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意作差法在比较大小中的灵活运用.
练习册系列答案
相关题目