题目内容
已知函数f(x)=sin(
+x)sin(
-x).
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)设α是锐角,且sin(α-
)=
,求f(α)的值.
| π |
| 4 |
| π |
| 4 |
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)设α是锐角,且sin(α-
| π |
| 4 |
| 1 |
| 2 |
(Ⅰ) f(x)=sin(
+x)sin(
-x)=
cos2x-
sin2x=
cos2x. 由 2kπ≤2x≤2kπ+π,k∈z,
可得 kπ≤x≤kπ+
,故求f(x)的单调递减区间为[kπ,kπ+
],k∈z.
(Ⅱ)∵α是锐角,且sin(α-
)=
,∴α-
=
,α=
.
∴f(α)=
cos2x=
cos
=
×(-
)=-
.
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
可得 kπ≤x≤kπ+
| π |
| 2 |
| π |
| 2 |
(Ⅱ)∵α是锐角,且sin(α-
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| π |
| 6 |
| 5π |
| 12 |
∴f(α)=
| 1 |
| 2 |
| 1 |
| 2 |
| 5π |
| 6 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
练习册系列答案
相关题目