ÌâÄ¿ÄÚÈÝ
ÒÑÖªÇúÏßC£ºf£¨x£©=x2£¬CÉϵĵãA0£¬AnµÄºá×ø±ê·Ö±ðΪ1ºÍan£¨n¡ÊN*£©£¬ÇÒa1=5£¬ÊýÁÐ{xn}Âú×ã
£¬ÉèÇø¼äDn=[1£¬an]£¨an£¾1£©£¬µ±x¡ÊDnʱ£¬ÇúÏßCÉÏ´æÔÚµãPn£¨xn£¬f£¨xn£©£©£¬Ê¹µÃµãPn´¦µÄÇÐÏßÓëÖ±ÏßA0AnƽÐУ®
£¨1£©Ö¤Ã÷£º{logt£¨xn-1£©+1}ÊǵȱÈÊýÁУ»
£¨2£©µ±Dn+1?Dn¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢Ê±£¬ÇótµÄȡֵ·¶Î§£»
£¨3£©¼ÇÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µ±
ʱ£¬ÊԱȽÏSnÓën+7µÄ´óС£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
½â£º£¨1£©¡ßÓÉÏßÔÚµãPnµÄÇÐÏßÓëÖ±ÏßAAnƽÐУ¬
¡à
£¬¼´
£¬
ÓÉxn+1=tf£¨xn+1-1£©+1£¬µÃxn+1-1=t£¨xn-1£©2£¬
¡àlogt£¨xn+1-1£©=1+2logt£¨xn-1£©£¬
¼´logt£¨xn+1-1£©+1=2[logt£¨xn-1£©+1]£¬
¡à{logt£¨xn-1£©+1}ÊÇÊ×ÏîΪlogt2+1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ®
£¨2£©ÓÉ£¨1£©µÃlogt£¨xn-1£©+1=£¨logt2+1£©•2n-1£¬
¡à
£®
´Ó¶ø
£¬
ÓÉDn+1?Dn¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
µÃan+1£¼an£¬
¼´
£¬
¡à0£¼2t£¼1£¬
¼´
£®
£¨3£©µ±
ʱ£¬
£¬
¡à
£¬
µ±n¡Ü3ʱ£¬2n-1¡Ün+1£»
µ±n¡Ý4ʱ£¬2n-1£¾n+1£¬
¡àµ±n¡Ü3ʱ£¬
£¼n+7£®
µ±n¡Ý4ʱ£¬Sn£¼

=
£¼n+7£®
×ÛÉÏËùÊö£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn£¼n+7£®
·ÖÎö£º£¨1£©ÓÉÏßÔÚµãPnµÄÇÐÏßÓëÖ±ÏßAAnƽÐУ¬Öª
£¬ÓÉxn+1=tf£¨xn+1-1£©+1£¬µÃxn+1-1=t£¨xn-1£©2£¬ÓÉ´ËÄܹ»Ö¤Ã÷{logt£¨xn-1£©+1}ÊǵȱÈÊýÁУ®
£¨2£©ÓÉlogt£¨xn-1£©+1=£¨logt2+1£©•2n-1£¬µÃ
£®´Ó¶ø
£¬ÓÉDn+1?Dn¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬µÃan+1£¼an£¬ÓÉ´ËÄÜÇó³ötµÄȡֵ·¶Î§£®
£¨3£©µ±
ʱ£¬
£¬ËùÒÔ
£¬ÓÉ´ËÄܹ»±È½Ï±È½ÏSnÓën+7µÄ´óС£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
¡à
ÓÉxn+1=tf£¨xn+1-1£©+1£¬µÃxn+1-1=t£¨xn-1£©2£¬
¡àlogt£¨xn+1-1£©=1+2logt£¨xn-1£©£¬
¼´logt£¨xn+1-1£©+1=2[logt£¨xn-1£©+1]£¬
¡à{logt£¨xn-1£©+1}ÊÇÊ×ÏîΪlogt2+1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ®
£¨2£©ÓÉ£¨1£©µÃlogt£¨xn-1£©+1=£¨logt2+1£©•2n-1£¬
¡à
´Ó¶ø
ÓÉDn+1?Dn¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢£¬
µÃan+1£¼an£¬
¼´
¡à0£¼2t£¼1£¬
¼´
£¨3£©µ±
¡à
µ±n¡Ü3ʱ£¬2n-1¡Ün+1£»
µ±n¡Ý4ʱ£¬2n-1£¾n+1£¬
¡àµ±n¡Ü3ʱ£¬
µ±n¡Ý4ʱ£¬Sn£¼
=
£¼n+7£®
×ÛÉÏËùÊö£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn£¼n+7£®
·ÖÎö£º£¨1£©ÓÉÏßÔÚµãPnµÄÇÐÏßÓëÖ±ÏßAAnƽÐУ¬Öª
£¨2£©ÓÉlogt£¨xn-1£©+1=£¨logt2+1£©•2n-1£¬µÃ
£¨3£©µ±
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿