题目内容
(2011•嘉定区三模)设n∈N*,(2x+1)n展开式各项系数之和为an,(3x+1)n展开式各项系数之和为bn,则
=
.
| lim |
| n→∞ |
| 2an+3bn |
| an+1+bn+1 |
| 3 |
| 4 |
| 3 |
| 4 |
分析:通过对二项式中的(2x+1)n赋值x=1可得展开式中各项系数之和,同理可求为bn,代入极限式中求出极限值.
解答:解:令x=1,得各项系数之和为an=3n,同理可得bn=4n
则
=
=
=
故答案为:
则
| lim |
| n→∞ |
| 2an+3bn |
| an+1+bn+1 |
| lim |
| n→∞ |
| 2•3n+3•4n |
| 3n+1+4n+1 |
=
| lim |
| n→∞ |
2• (
| ||
3• (
|
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
点评:本题考查赋值法求展开式的各系系数和,数列极限的求解,解题的关键是数列通项公式的求解
练习册系列答案
相关题目