题目内容
已知函数f(x)=asinx•cosx-
acos2x+
a+b(a>0)
(1)求函数的单调递减区间;
(2)设x∈[0,
],f(x)的最小值是-2,最大值是
,求实数a,b的值.
| 3 |
| ||
| 2 |
(1)求函数的单调递减区间;
(2)设x∈[0,
| π |
| 2 |
| 3 |
分析:(1)利用三角函数的恒等变换化简f(x)的解析式等于asin(2x-
)+b,由 2kπ+
≤2x-
≤2kπ+
,k∈z,求得x的范围即得函数的单调递减区间.
(2)根据 x∈[0,
],可得 2x-
的范围,sin(2x-
)的范围,根据f(x)的最小值是-2,最大值是
,求得实数a,b的值.
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
(2)根据 x∈[0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 3 |
解答:解:(1)f(x)=asinx•cosx-
a cos2x+
a+b(a>0)=
sin2x-
a(1+cos2x)+
+b
=
sin2x-
a•cos2x+b=asin(2x-
)+b.
由 2kπ+
≤2x-
≤2kπ+
,k∈z,解得 kπ+
≤x≤kπ+
,k∈z,
故函数的单调递减区间为[kπ+
,kπ+
],k∈z.
(2)∵x∈[0,
],∴-
≤2x-
≤
,∴-
≤sin(2x-
)≤1.
∴f(x)min =-
+ b=-2,f(x)max =a+b=
,
解得 a=2,b=-2+
.
| 3 |
| ||
| 2 |
| a |
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| a |
| 2 |
| ||
| 2 |
| π |
| 3 |
由 2kπ+
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
| 5π |
| 12 |
| 11π |
| 12 |
故函数的单调递减区间为[kπ+
| 5π |
| 12 |
| 11π |
| 12 |
(2)∵x∈[0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| ||
| 2 |
| π |
| 3 |
∴f(x)min =-
| ||
| 2 |
| 3 |
解得 a=2,b=-2+
| 3 |
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调性和值域,化简f(x)的解析式等于asin(2x-
)+b,是解题的关键.
| π |
| 3 |
练习册系列答案
相关题目