题目内容
(3分)(2011•重庆)高为
的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( )
| A. | B. | C.1 | D. |
C
解析试题分析:由题意可知ABCD所在的圆是小圆,对角线长为
,四棱锥的高为
,而球心到小圆圆心的距离为
,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.
解:由题意可知ABCD所在的圆是小圆,对角线长为
,四棱锥的高为
,
点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为
,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1
故选C![]()
点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.
练习册系列答案
相关题目
如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )![]()
| A.三棱锥 | B.三棱柱 | C.四棱锥 | D.四棱柱 |
[2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是( )![]()
| A.棱柱 | B.棱台 | C.圆柱 | D.圆台 |