题目内容
已知曲线f(x)=x3-3x.
(Ⅰ)求曲线在点P(1,-2)处的切线方程;
(Ⅱ)求过点Q(2,-6)的曲线y=f(x)的切线方程.
已知函数f(x)=x(x-a)(x-b),其中0<a<b.
(1)设f(x)在x=s及x=t处取到极值,其中s<t,求证:0<s<a<t<b.
(2)设A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上.
(3)若a+b<2,求证:过原点且与曲线y=f(x)相切的两条直线不可能垂直.
已知曲线f(x)=x2+2x在点(x1,f(x1))处的切线为l.
(Ⅰ)求l的方程;
(Ⅱ)设g(x)=(x+a)f(x),若g(x)在[1,2]上是增函数,求实数a的取值范围;
(Ⅲ)试判断l能否与曲线g(x)=ln(x+1)相切?并说明理由.
已知函数f(x)=x-alnx,(a∈R)
(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[e,e2]是否存在实数a,使得函数f(x)有最大值e,若存在,求出a的值;若不存在,说明理由.
(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnx,g(x)=ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
(本小题满分13分)(第一问8分,第二问5分)已知函数f(x)=2lnx,g(x)=ax2+3x.(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.