题目内容

10.系统内有2k-1(k∈N*)个元件,每个元件正常工作的概率为p(0<p<1),若有超过一半的元件正常工作,则系统正常工作,求系统正常工作的概率pk,并讨论pk的单调性.

分析 由题意,pk=$\sum_{n=0}^{k-1}$C2k-1n(1-p)np2k-1-n,利用C2k+1n=C2k-1n+2C2k-1n-1+C2k-1n-2,可得pk+1=pk+C2k-1k(1-p)kpk(2p-1),即可得出结论.

解答 解:由题意,pk=$\sum_{n=0}^{k-1}$C2k-1n(1-p)np2k-1-n
∵C2k+1n=C2k-1n+2C2k-1n-1+C2k-1n-2
∴pk+1=$\sum_{n=0}^{k}$C2k+1n(1-p)np2k+1-n
=$\sum_{n=0}^{k}$(C2k-1n+2C2k-1n-1+C2k-1n-2)(1-p)np2k+1-n
=$\sum_{n=0}^{k-1}$C2k-1n(1-p)np2k-1-n+C2k-1k(1-p)kpk[p-(1-p)]
=pk+C2k-1k(1-p)kpk(2p-1)
∴p>$\frac{1}{2}$,pk递增,p<$\frac{1}{2}$,pk递减,p=$\frac{1}{2}$,pk不变.

点评 本题考查概率的运用,考查学生的计算能力,确定pk+1=pk+C2k-1k(1-p)kpk(2p-1)是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网