题目内容

已知椭圆C:
x2
4
+
y2
3
=1
的左焦点为F,过F点的直线l交椭圆于A,B两点,P为线段AB的中点,当△PFO的面积最大时,求直线l的方程.
由椭圆C:
x2
4
+
y2
3
=1
可得a2=4,b2=3,∴c=
a2-b2
=1.
∴左焦点F(-1,0).
由题意只考虑直线l的斜率存在且不为0即可,
设直线l的方程为my=x+1,A(x1,y1),B(x2,y2),
联立
my=x+1
x2
4
+
y2
3
=1
化为(4+3m2)y2-6my-9=0,
y1+y2=
6m
4+3m2

yP=
y1+y2
2
=
3m
4+3m2

∴S△PFO=
1
2
|OF|•|yP|
=
|3m|
2(4+3m2)
=
3
2(
4
|m|
+3|m|)
3
2×2
12
=
3
8
,当且仅当|m|=
2
3
3
时取等号.
此时△PFO的最大值为
3
8
,直线l的方程为±
2
3
3
y=x+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网