题目内容
【题目】已知双曲线
=1(a>0,b>0),A1 , A2是实轴顶点,F是右焦点,B(0,b)是虚轴端点,若在线段BF上(不含端点)存在不同的两点p1(i=1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是( )
A.(
,+∞)
B.(
,+∞)
C.(1,
)
D.(
,
)
【答案】D
【解析】解:由题意,F(c,0),B(0,b),则直线BF的方程为bx+cy﹣bc=0, ∵在线段BF上(不含端点)存在不同的两点Pi(i=1,2),使得△PiA1A2(i=1,2)构成以线段A1A2为斜边的直角三角形,
∴
<a,
∴e4﹣3e2+1<0,
∵e>1,
∴e<
∵a<b,
∴a2<c2﹣a2 ,
∴e>
,
∴
<e<
.
故选:D.
练习册系列答案
相关题目