题目内容
已知A、B、C三点的坐标分别为A(-sin
,sin
),B(sin
,-2cos
),C(cos
,0).
(Ⅰ)求向量
和向量
的坐标;
(Ⅱ)设f(x)=
•
,求f(x)的最小正周期;
(Ⅲ)求当x∈[
,
]时,f(x)的最大值及最小值.
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
(Ⅰ)求向量
| AC |
| BC |
(Ⅱ)设f(x)=
| AC |
| BC |
(Ⅲ)求当x∈[
| π |
| 12 |
| 5π |
| 6 |
(Ⅰ)
=(cos
+sin
,-sin
),
=(cos
-sin
,2cos
).
(Ⅱ)∵f(x)=
•
=(cos
+sin
)•(cos
-sin
)+(-sin
)•2cos
=cos2
-sin2
-2sin
cos
=cosx-sinx
=
(cosx•
-sinx•
)
=
cos(x+
)
∴f(x)的最小正周期T=2π.
(Ⅲ)∵
≤x≤
,∴
≤x+
≤
.
∴当x+
=π,即x=
时,f(x)有最小值-
,
当x+
=
,即x=
时,f(x)有最大值
.
| AC |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| BC |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
(Ⅱ)∵f(x)=
| AC |
| BC |
=(cos
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
=cos2
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
=cosx-sinx
=
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 2 |
| π |
| 4 |
∴f(x)的最小正周期T=2π.
(Ⅲ)∵
| π |
| 12 |
| 5π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| 13π |
| 12 |
∴当x+
| π |
| 4 |
| 3π |
| 4 |
| 2 |
当x+
| π |
| 4 |
| π |
| 3 |
| π |
| 12 |
| ||
| 2 |
练习册系列答案
相关题目