题目内容
函数y=sin(-2x+
)的单调递减区间为
| π |
| 3 |
[kπ-
,kπ+
],k∈z
| π |
| 12 |
| 5π |
| 12 |
[kπ-
,kπ+
],k∈z
.| π |
| 12 |
| 5π |
| 12 |
分析:利用诱导公式 把函数化为 y=-sin(2x-
),令2kπ-
≤2x-
≤2kπ+
,k∈z,求出x的范围,即得 函数y=sin(-2x+
)的单调递减区间.
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
解答:解:由于函数y=sin(-2x+
)=-sin(2x-
),本题即求函数t=sin(2x-
)的增区间.
令2kπ-
≤2x-
≤2kπ+
,k∈z,可得 kπ-
≤x≤kπ+
,
故函数y=sin(-2x+
)的单调递减区间为[kπ-
,kπ+
],
故答案为[kπ-
,kπ+
],k∈z.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
令2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| 5π |
| 12 |
故函数y=sin(-2x+
| π |
| 3 |
| π |
| 12 |
| 5π |
| 12 |
故答案为[kπ-
| π |
| 12 |
| 5π |
| 12 |
点评:本题考查正弦函数的单调减区间,诱导公式的应用,把函数化为 y=-sin(2x-
),是解题的关键和易错点,
属于中档题.
| π |
| 3 |
属于中档题.
练习册系列答案
相关题目