ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯ÊýF(x)=£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚÊýÁÐ{bn}ÖУ¬¶ÔÈÎÒâÕýÕûÊýn£¬bn¡¤
¶¼³ÉÁ¢£¬ÉèSnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬±È½ÏSnÓë12µÄ´óС£»
£¨3£©ÔÚµãÁÐAn(2n,
)(n¡ÊN*)ÖУ¬ÊÇ·ñ´æÔÚÈý¸ö²»Í¬µãAk¡¢Al¡¢Am£¬Ê¹Ak¡¢Al¡¢AmÔÚÒ»ÌõÖ±ÏßÉÏ£¿Èô´æÔÚ£¬Ð´³öÒ»×éÔÚÒ»ÌõÖ±ÏßÉϵÄÈý¸öµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
£¨1£©½â£ºÓÉ
=f(an)£¬µÃ
=
=
.?
¡à
-
=4,¼´{
}ÊÇÒÔ
=1ΪÊ×Ï4Ϊ¹«²îµÄµÈ²îÊýÁÐ.?
ÓÐ
=1+£¨n-1£©¡Á4=4n-3£¬?
¡ßan£¾0,¡àan=
. ?
£¨2£©½â£º¡ßbn¡¤
,?
¡àbn¡¤£Û(3n-1)+
£Ý=bn(4n2-1)=1.?
¡àbn=
=
(
-
).?
¡àSn=b1+b2+¡+bn?
=
£Û(1-
)+(
-
)+¡+(
-
)£Ý?
=
(1-
)£¼
.?
¡àSn£¼
. ?
£¨3£©½â£ºµãÁÐAn(2n,
(n¡ÊN*)Öв»¿ÉÄÜÓй²ÏßµÄÈý¸öµã. ?
¸ù¾Ý£¨1£©£¬¿ÉµÃAn(2n,
)(n¡ÊN*)£¬?
Áîx=2n,y=
,Ôòy=
£¨x¡Ý2£©.?
µã£¨x,y£©ÔÚÇúÏßx2-y2=1(x¡Ý2,y¡Ý
)ÉÏ£¬?
ËùÒÔAn(2n,
)ÔÚÇúÏßx2-y2=1(x¡Ý2,y¡Ý
)ÉÏ£¬¶øÖ±Ïß·½³ÌÓëx2-y2=1ÁªÁ¢×é³ÉµÄ·½³Ì×é×î¶àÓÐÁ½×鲻ͬµÄ½â.ËùÒÔÖ±ÏßÓëx2-y2=1×î¶àÓÐÁ½¸ö½»µã.?
ËùÒÔµãÁÐAn(2n,
)(n¡ÊN*)Öв»¿ÉÄÜÓй²ÏßµÄÈý¸öµã.
|
A¡¢(
| ||||
B¡¢£¨
| ||||
C¡¢£¨
| ||||
D¡¢[
|