题目内容
【题目】已知函数
,
.
(1)问:
能否为偶函数?请说明理由;
(2)总存在一个区间
,当
时,对任意的实数
,方程
无解,当
时,存在实数
,方程
有解,求区间
.
【答案】(1)不可能是偶函数;(2)
.
【解析】分析:(1)根据偶函数定义,分类讨论
不同情况下是否存在偶函数的可能。
(2)讨论在x取正数、负数两种不同情况下的解集;再对每个情况下对a进行分类讨论存在性成立的条件。
详解:(1)定义域为
关于原点对称,
当
时,
为偶函数,
当
时,
,则
,
则
,
若
,则
,
若
,则
,
所以
不可能恒等于零,
即
不可能是偶函数.
(2)先考虑
,
①当
时,
无解;
②当
时,
,只有当
时,才有
,
③当
时,
可化为
,
所以
,
因为
不是上式的根,所以
,
解得
,
即当
时,
;
再考虑
,
①当
时,
无解;
②当
时,
,只有当
时,才有
,
③当
时,
可化为
,
所以
,
因为
不是上式的根,所以
,
解得
,
即当
时,
;
综上,区间
.
练习册系列答案
相关题目