ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÃüÌâÖУ¬ÕæÃüÌâÊÇ
¢ÙÈôf¡ä£¨x0£©=0£¬Ôòº¯Êýf£¨x£©ÔÚx=x0´¦È¡¼«Öµ£®
¢Úº¯Êýf£¨x£©=lnx+x-2ÔÚÇø¼ä£¨1£¬e£©ÉÏ´æÔÚÁãµã£®
¢Û¡°a=1¡±ÊǺ¯Êýf(x)=
ÔÚ¶¨ÒåÓòÉÏÊÇÆæº¯ÊýµÄ³ä·Ö²»±ØÒªÌõ¼þ£®
¢Ü½«º¯Êýy=2cos2x-1µÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»¿ÉµÃµ½y=sin2xµÄͼÏó£®
¢Ýµã(
£¬
)ÊǺ¯Êýf(x)=cos
x(
sin
x+cos
x)ͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄ£®
¢Ú¢Û
¢Ú¢Û
£®¢ÙÈôf¡ä£¨x0£©=0£¬Ôòº¯Êýf£¨x£©ÔÚx=x0´¦È¡¼«Öµ£®
¢Úº¯Êýf£¨x£©=lnx+x-2ÔÚÇø¼ä£¨1£¬e£©ÉÏ´æÔÚÁãµã£®
¢Û¡°a=1¡±ÊǺ¯Êýf(x)=
| a-ex |
| 1+aex |
¢Ü½«º¯Êýy=2cos2x-1µÄͼÏóÏòÓÒÆ½ÒÆ
| 3¦Ð |
| 4 |
¢Ýµã(
| ¦Ð |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
·ÖÎö£ºÁîf£¨x£©=x3£¬¿ÉÅжϢٴíÎ󣻸ù¾Ýº¯ÊýÁãµã´æÔÚ¶¨Àí£¬¿ÉÅжϢڴíÎ󣻸ù¾ÝÆæº¯ÊýµÄ¶¨ÒåÇó³öaÖµ£¬ÀûÓóäÒªÌõ¼þµÄ¶¨Ò壬¿ÉÅжϢ۵ÄÕæ¼Ù£¬¸ù¾Ýº¯ÊýͼÏóÆ½ÒÆ±ä»»·¨Ôò£¬Çó³öÆ½ÒÆºóº¯ÊýµÄ½âÎöʽ£¬¶ÔÕÕºó¿ÉÅжϢܵÄÕæ¼Ù£¬¸ù¾ÝÕýÏÒÐͺ¯ÊýµÄ¶Ô³ÆÐÔ£¬½«µãµÄºá×ø±ê´úÈë¿ÉÅжϢݵÄÕæ¼Ù£®
½â´ð£º½â£ºÁîf£¨x£©=x3£¬Ôòf¡ä£¨x0£©=3x2£¬µ±x=0ʱ£¬f¡ä£¨x£©=0£¬´Ëʱº¯Êýf£¨x£©²»ÊǼ«Öµ£¬¹Ê¢Ù´íÎó£»
º¯Êýf£¨x£©=lnx+x-2ÔÚÇø¼ä£¨1£¬e£©ÉÏÊÇÁ¬ÐøµÄ£¬ÇÒf£¨1£©=-1£¼0£¬f£¨e£©=e-1£¾0£¬¸ù¾Ýº¯ÊýÁãµã´æÔÚ¶¨Àí£¬¿ÉµÃº¯ÊýÔÚÇø¼ä£¨1£¬e£©ÉÏ´æÔÚÁãµã£¬¹Ê¢ÚÕýÈ·£»
º¯Êýf(x)=
ÔÚ¶¨ÒåÓòÉÏÊÇÆæº¯Êý£¬Ôòf(-x)=
=
=-f(x)=-
£¬¼´½âµÃa=¡À1£¬¹Ê¢Û¡°a=1¡±ÊǺ¯Êýf(x)=
ÔÚ¶¨ÒåÓòÉÏÊÇÆæº¯ÊýµÄ³ä·Ö²»±ØÒªÌõ¼þÕýÈ·£»
½«º¯Êýy=2cos2x-1=cos2xµÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»¿ÉµÃµ½y=cos[2£¨x-
£©]=cos£¨2x-
£©=-sin2xµÄͼÏ󣬹ʢܴíÎó£®
µ±x=
ʱ£¬º¯Êýf(x)=cos
x(
sin
x+cos
x)=sin(x+
)+
=
£¬´Ëʱº¯ÊýÈ¡×î´óÖµ£¬¹Ê¢Ý´íÎó
¹Ê´ð°¸Îª¢Ú¢Û
º¯Êýf£¨x£©=lnx+x-2ÔÚÇø¼ä£¨1£¬e£©ÉÏÊÇÁ¬ÐøµÄ£¬ÇÒf£¨1£©=-1£¼0£¬f£¨e£©=e-1£¾0£¬¸ù¾Ýº¯ÊýÁãµã´æÔÚ¶¨Àí£¬¿ÉµÃº¯ÊýÔÚÇø¼ä£¨1£¬e£©ÉÏ´æÔÚÁãµã£¬¹Ê¢ÚÕýÈ·£»
º¯Êýf(x)=
| a-ex |
| 1+aex |
| a-e-x |
| 1+ae-x |
| aex-1 |
| ex+a |
| a-ex |
| 1+aex |
| a-ex |
| 1+aex |
½«º¯Êýy=2cos2x-1=cos2xµÄͼÏóÏòÓÒÆ½ÒÆ
| 3¦Ð |
| 4 |
| 3¦Ð |
| 4 |
| 3¦Ð |
| 2 |
µ±x=
| ¦Ð |
| 3 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| ¦Ð |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
¹Ê´ð°¸Îª¢Ú¢Û
µãÆÀ£º±¾ÌâÊÇÃüÌâµÄÕæ¼ÙÅжÏÎªÔØÌ忼²éÁ˺¯ÊýÈ¡¼«ÖµµÄÌõ¼þ£¬º¯ÊýµÄÁãµã£¬Ææº¯ÊýµÄ¶¨Ò壬º¯ÊýͼÏóµÄÆ½ÒÆ£¬º¯ÊýµÄ¶Ô³ÆÐÔ£¬ÊǺ¯ÊýÓëÂß¼µÄ×ÛºÏÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿