题目内容
已知函数f(x)=lnx,g(x)=| 1 |
| 2 |
(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(Ⅱ)若φ(x)=
| m(x-1) |
| x+1 |
(Ⅲ)证明不等式:
| 2n |
| n+1 |
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| ln(n+1) |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
分析:(Ⅰ)求导数,利用f(x)与g(x)在x=1处相切,可求g(x)的表达式;
(Ⅱ)φ(x)=
-f(x)在[1,+∞)上是减函数,可得导函数小于等于0在[1,+∞)上恒成立,分离参数,利用基本不等式,可求实数m的取值范围;
(Ⅲ)当x≥2时,证明2(
-
)<
,当x>1时,证明
<
•
,利用叠加法,即可得到结论.
(Ⅱ)φ(x)=
| m(x-1) |
| x+1 |
(Ⅲ)当x≥2时,证明2(
| 1 |
| x-1 |
| 1 |
| x |
| 1 |
| lnx |
| 1 |
| lnx |
| 1 |
| 2 |
| x+1 |
| x-1 |
解答:(Ⅰ)解:∵f(x)=lnx,∴f′(x)=
,∴f′(1)=1=
a,得:a=2------------------(2分)
又∵g(1)=0=
a+b,∴b=-1,∴g(x)=x-1;----------------(3分)
(Ⅱ)解:∵φ(x)=
-f(x)=
-lnx在[1,+∞)上是减函数,∴ϕ′(x)=
≤0在[1,+∞)上恒成立.------------------(5分)
即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,由2m-2≤x+
,x∈[1,+∞),
∵x+
∈[2,+∞),∴2m-2≤2得m≤2;------------------(6分)
(Ⅲ)证明:由(Ⅰ)可得:当x≥2时,lnx<x-1≤
(x-1),
∴lnx<
x(x-1)得:
<
,∴2(
-
)<
,------------------(8分)
∴当x=2时,2(
-
)<
;当x=3时,2(
-
)<
;当x=4时,2(
-
)<
,…,当x=n+1时,2(
-
)<
,n∈N+,n≥2
上述不等式相加得:2(1-
)<
+
+
+…+
即:
<
+
+
+…+
①------------------(9分)
由(Ⅱ)可得:当m=2时,ϕ(x)=
-lnx在[1,+∞)上是减函数,∴当x>1时,ϕ(x)<ϕ(1)=0,即
-lnx<0,
所以lnx>
,从而得到
<
•
.-----------------(11分)
当x=2时,
<
•
;当x=3时,
<
•
;当x=4时,
<
•
,…,当x=n+1时,
<
•
,n∈N+,n≥2
上述不等式相加得:
+
+
+…+
<
(
+
+
+…+
)=
(n+
+
+
+…+
)=
+1+
+
+…+
即
+
+
+…+
<
+1+
+
+…+
②
综上:
<
+
+
+…+
<
+1+
+
+…+
(n∈N+,n≥2)------------------(12分)
| 1 |
| x |
| 1 |
| 2 |
又∵g(1)=0=
| 1 |
| 2 |
(Ⅱ)解:∵φ(x)=
| m(x-1) |
| x+1 |
| m(x-1) |
| x+1 |
| -x2+(2m-2)x-1 |
| x(x+1)2 |
即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,由2m-2≤x+
| 1 |
| x |
∵x+
| 1 |
| x |
(Ⅲ)证明:由(Ⅰ)可得:当x≥2时,lnx<x-1≤
| x |
| 2 |
∴lnx<
| 1 |
| 2 |
| 2 |
| x(x-1) |
| 1 |
| lnx |
| 1 |
| x-1 |
| 1 |
| x |
| 1 |
| lnx |
∴当x=2时,2(
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| ln2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| ln3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| ln4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| ln(n+1) |
上述不等式相加得:2(1-
| 1 |
| n+1 |
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| ln(n+1) |
即:
| 2n |
| n+1 |
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| ln(n+1) |
由(Ⅱ)可得:当m=2时,ϕ(x)=
| 2(x-1) |
| x+1 |
| 2(x-1) |
| x+1 |
所以lnx>
| 2(x-1) |
| x+1 |
| 1 |
| lnx |
| 1 |
| 2 |
| x+1 |
| x-1 |
当x=2时,
| 1 |
| ln2 |
| 1 |
| 2 |
| 3 |
| 1 |
| 1 |
| ln3 |
| 1 |
| 2 |
| 4 |
| 2 |
| 1 |
| ln4 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| ln(n+1) |
| 1 |
| 2 |
| n+2 |
| n |
上述不等式相加得:
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| ln(n+1) |
| 1 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 5 |
| 3 |
| n+2 |
| n |
| 1 |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| n |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
即
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| ln(n+1) |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
综上:
| 2n |
| n+1 |
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| ln(n+1) |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
点评:本题考查不等式的证明,考查导数知识的运用,考查基本不等式的运用,考查叠加法,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关题目