题目内容

已知函数f(x)=lnx,g(x)=
1
2
ax+b

(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(Ⅱ)若φ(x)=
m(x-1)
x+1
-f(x)
在[1,+∞)上是减函数,求实数m的取值范围;
(Ⅲ)证明不等式:
2n
n+1
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
n
2
+1+
1
2
+
1
3
+…+
1
n
分析:(Ⅰ)求导数,利用f(x)与g(x)在x=1处相切,可求g(x)的表达式;
(Ⅱ)φ(x)=
m(x-1)
x+1
-f(x)
在[1,+∞)上是减函数,可得导函数小于等于0在[1,+∞)上恒成立,分离参数,利用基本不等式,可求实数m的取值范围;
(Ⅲ)当x≥2时,证明2(
1
x-1
-
1
x
)<
1
lnx
,当x>1时,证明
1
lnx
1
2
x+1
x-1
,利用叠加法,即可得到结论.
解答:(Ⅰ)解:∵f(x)=lnx,∴f′(x)=
1
x
,∴f′(1)=1=
1
2
a
,得:a=2------------------(2分)
又∵g(1)=0=
1
2
a+b
,∴b=-1,∴g(x)=x-1;----------------(3分)
(Ⅱ)解:∵φ(x)=
m(x-1)
x+1
-f(x)
=
m(x-1)
x+1
-lnx
在[1,+∞)上是减函数,∴ϕ′(x)=
-x2+(2m-2)x-1
x(x+1)2
≤0
在[1,+∞)上恒成立.------------------(5分)
即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,由2m-2≤x+
1
x
,x∈[1,+∞),
x+
1
x
∈[2,+∞)
,∴2m-2≤2得m≤2;------------------(6分)
(Ⅲ)证明:由(Ⅰ)可得:当x≥2时,lnx<x-1≤
x
2
(x-1)

lnx<
1
2
x(x-1)
得:
2
x(x-1)
1
lnx
,∴2(
1
x-1
-
1
x
)<
1
lnx
,------------------(8分)
∴当x=2时,2(
1
1
-
1
2
)<
1
ln2
;当x=3时,2(
1
2
-
1
3
)<
1
ln3
;当x=4时,2(
1
3
-
1
4
)<
1
ln4
,…,当x=n+1时,2(
1
n
-
1
n+1
)<
1
ln(n+1)
,n∈N+,n≥2
上述不等式相加得:2(1-
1
n+1
)<
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)

即:
2n
n+1
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
①------------------(9分)
由(Ⅱ)可得:当m=2时,ϕ(x)=
2(x-1)
x+1
-lnx
在[1,+∞)上是减函数,∴当x>1时,ϕ(x)<ϕ(1)=0,即
2(x-1)
x+1
-lnx
<0,
所以lnx>
2(x-1)
x+1
,从而得到
1
lnx
1
2
x+1
x-1
.-----------------(11分)
当x=2时,
1
ln2
1
2
3
1
;当x=3时,
1
ln3
1
2
4
2
;当x=4时,
1
ln4
1
2
5
3
,…,当x=n+1时,
1
ln(n+1)
1
2
n+2
n
,n∈N+,n≥2
上述不等式相加得:
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
1
2
(
3
1
+
4
2
+
5
3
+…+
n+2
n
)
=
1
2
(n+
2
1
+
2
2
+
2
3
+…+
2
n
)
=
n
2
+1+
1
2
+
1
3
+…+
1
n

1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
n
2
+1+
1
2
+
1
3
+…+
1
n

综上:
2n
n+1
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
n
2
+1+
1
2
+
1
3
+…+
1
n
(n∈N+,n≥2)------------------(12分)
点评:本题考查不等式的证明,考查导数知识的运用,考查基本不等式的运用,考查叠加法,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网