题目内容

抛物线的顶点在原点,焦点在y轴上,其上的点P(m,-3)到焦点的距离为5,则抛物线的方程为(  )
A、x2=-8yB、y2=-8xC、x2=16yD、y2=16x
分析:根据p点纵坐标为-3可知抛物线开口向下,设抛物线的标准方程,根据抛物线的方程可知3+
p
2
=5求得p,进而可得到抛物线方程,把A点纵坐标代入方程,可求得P点的横坐标.
解答:解:根据A点纵坐标为-3可知抛物线开口向下,设抛物线方程x2=-2py
根据抛物线的定义可知3+
p
2
=5,p=4;
∴抛物线方程为x2=-8y,
故选A.
点评:本题主要考查抛物线的标准方程,考查了对抛物线基础知识的理解和应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网