题目内容

在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8的值为


  1. A.
    45
  2. B.
    90
  3. C.
    180
  4. D.
    300
C
分析:根据等差数列的性质可知,项数之和相等的两项之和相等,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.
解答:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=450,
得到a5=90,
则a2+a8=2a5=180.
故选C
点评:此题考查学生灵活运用等差数列的性质化简求值,是一道基础题.学生化简已知条件时注意项数之和等于10的两项结合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网