题目内容
已知数列{an}是等比数列,a2=2,a5=16,则a1a2+a2a3+…+anan+1=______.
由数列{an}是等比数列,a2=2,a5=16,可得 公比q=2,首项a1=1,
∴an=2n-1,an+1=2n,∴anan+1 =22n-1,∴a1a2=2,
故数列{anan+1 }是公比为4的等比数列,∴a1a2+a2a3+…+anan+1 =
=
(4n-1),
故答案为
(4n-1).
∴an=2n-1,an+1=2n,∴anan+1 =22n-1,∴a1a2=2,
故数列{anan+1 }是公比为4的等比数列,∴a1a2+a2a3+…+anan+1 =
| 2[1-4n] |
| 1-4 |
| 2 |
| 3 |
故答案为
| 2 |
| 3 |
练习册系列答案
相关题目