题目内容
(2013•广州二模)已知α为锐角,且cos(α+
)=
,则sinα=
.
| π |
| 4 |
| 3 |
| 5 |
| ||
| 10 |
| ||
| 10 |
分析:由α为锐角求出α+
的范围,利用同角三角函数间的基本关系求出sin(α+
)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.
| π |
| 4 |
| π |
| 4 |
解答:解:∵α为锐角,∴α+
∈(
,
),
∵cos(α+
)=
,
∴sin(α+
)=
=
,
则sinα=sin[(α+
)-
]=sin(α+
)cos
-cos(α+
)sin
=
×
-
×
=
.
故答案为:
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
∵cos(α+
| π |
| 4 |
| 3 |
| 5 |
∴sin(α+
| π |
| 4 |
1-cos2(α+
|
| 4 |
| 5 |
则sinα=sin[(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
| ||
| 10 |
故答案为:
| ||
| 10 |
点评:此题考查了两角和与差的余弦函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目