题目内容
等差数列{an}的公差d不为零,首项a1=1,a2是a1和a5的等比中项.
(1)求数列{an}的通项公式及前n项和Sn
(2)证明数列{2an}为等比数列;
(3)求数列{
}的前n项和Tn.
(1)求数列{an}的通项公式及前n项和Sn
(2)证明数列{2an}为等比数列;
(3)求数列{
| 1 |
| an•an+1 |
(1)由题意知,∵a2是a1和a5的等比中项
∴(a1+d)2=a1(a1+4d),
即a12+2a1d+d2=a12++4a1d,
∴d=2a1=2.
∴an=1+(n-1)×2=2n-1,Sn=n×1+
×2=n2
(2)证明:∵
=2an-an-1=2d=4
∴数列{2an}为等比数列;
(3)
=
=
(
-
)
∴数列{
}的前n项和Tn=
{(1-
)+(
-
)+…+(
-
)=
(1-
)=
∴(a1+d)2=a1(a1+4d),
即a12+2a1d+d2=a12++4a1d,
∴d=2a1=2.
∴an=1+(n-1)×2=2n-1,Sn=n×1+
| n(n-1) |
| 2 |
(2)证明:∵
| 2an |
| 2an-1 |
∴数列{2an}为等比数列;
(3)
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{
| 1 |
| an•an+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
练习册系列答案
相关题目