题目内容
数列an中,a1=-3,an=2an-1+2n+3(n≥2且n∈N*).
(1)求a2,a3的值;
(2)设bn=
,证明{bn }是等差数列;
(3)求数列{an}的前n项和Sn.
(1)求a2,a3的值;
(2)设bn=
| an+3 |
| 2n |
(3)求数列{an}的前n项和Sn.
(1)a2=2a1+2+3=1,a3=2a22+23+3=13
(2)bn+1-bn=
-
=
(an+1-2an-3)=
=1.
∴数列{bn }是公差为1的等差数列.
(3)由(2)得bn=
=n-1,∴an=(n-1)•2n-3(n∈N*)
∴sn=0×21+1×22+…+(n-1)2n-3n
令Tn=0×21+1×22+…+(n-1)2n
则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1
两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1
=
-(n-1)2n+1=(2-n)•2n+1-4
∴Tn=(n-2)•2n+1+4
∴sn=(n-2)2n+1-3n+4.
(2)bn+1-bn=
| an+1+3 |
| 2n+1 |
| an+3 |
| 2n |
| 1 |
| 2n+1 |
| 2n+1 |
| 2n+1 |
∴数列{bn }是公差为1的等差数列.
(3)由(2)得bn=
| an+3 |
| 2n |
∴sn=0×21+1×22+…+(n-1)2n-3n
令Tn=0×21+1×22+…+(n-1)2n
则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1
两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1
=
| 4(1-2n-1) |
| 1-2 |
∴Tn=(n-2)•2n+1+4
∴sn=(n-2)2n+1-3n+4.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|