题目内容

数列an中,a1=-3,an=2an-1+2n+3(n≥2且n∈N*).
(1)求a2,a3的值;
(2)设bn=
an+3
2n
,证明{bn }是等差数列;
(3)求数列{an}的前n项和Sn
(1)a2=2a1+2+3=1,a3=2a22+23+3=13
(2)bn+1-bn=
an+1+3
2n+1
-
an+3
2n
=
1
2n+1
(an+1-2an-3)=
2n+1
2n+1
=1

∴数列{bn }是公差为1的等差数列.

(3)由(2)得bn=
an+3
2n
=n-1
,∴an=(n-1)•2n-3(n∈N*
∴sn=0×21+1×22+…+(n-1)2n-3n
令Tn=0×21+1×22+…+(n-1)2n
则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1
两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1
=
4(1-2n-1)
1-2
-(n-1)2n+1
=(2-n)•2n+1-4
∴Tn=(n-2)•2n+1+4
∴sn=(n-2)2n+1-3n+4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网