题目内容
| π |
| 2 |
| 2014 |
| n=1 |
| nπ |
| 6 |
分析:利用y=sin(ωx+φ)的部分图象可确定其解析式,从而可求
f(
).
| 2014 |
| n=1 |
| nπ |
| 6 |
解答:解:∵
T=
-
=
,ω>0,
∴T=
=π,
∴ω=2;
又
ω+φ=
+2kπ(k∈Z),
∴φ=
+2kπ(k∈Z),又|φ|<
,
∴φ=
,
∴f(x)=sin(2x+
).
∴f(
)=1,f(
)=f(
)=
,f(
)=f(
)=-
,f(
)=f(
)=-1,f(
)=-
,f(
)=f(π)=
,
∴
f(
)=1+
-
-1-
+
=0,即连续六项之和为0;
∴
f(
)
=
f(
)+f(
)+f(
)+f(
)+f(
)
=
f(
)+f(
)+f(
)+f(
)+f(
)
=0+0
=0.
故选:D.
| 1 |
| 4 |
| 5π |
| 12 |
| π |
| 6 |
| π |
| 4 |
∴T=
| 2π |
| ω |
∴ω=2;
又
| π |
| 6 |
| π |
| 2 |
∴φ=
| π |
| 6 |
| π |
| 2 |
∴φ=
| π |
| 6 |
∴f(x)=sin(2x+
| π |
| 6 |
∴f(
| π |
| 6 |
| 2π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| 3π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| 4π |
| 6 |
| 2π |
| 3 |
| 5π |
| 6 |
| 1 |
| 2 |
| 6π |
| 6 |
| 1 |
| 2 |
∴
| 6 |
| n=1 |
| nπ |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 2014 |
| n=1 |
| nπ |
| 6 |
=
| 2010 |
| n=1 |
| nπ |
| 6 |
| 2011π |
| 6 |
| 2012π |
| 6 |
| 2013π |
| 6 |
| 2014π |
| 6 |
=
| 2010 |
| n=1 |
| nπ |
| 6 |
| π |
| 6 |
| 2π |
| 6 |
| 3π |
| 6 |
| 4π |
| 6 |
=0+0
=0.
故选:D.
点评:本题考查由y=sin(ωx+φ)的部分图象确定其解析式,考查函数的周期性及函数求值,属于中档题.
练习册系列答案
相关题目