题目内容

过点P(4,4)且与双曲线
x2
16
-
y2
9
=1只有一个公共点的直线有
4
4
条.
分析:分为三类考虑:直线的斜率不存在;与渐近线平行的直线;与左支相切,即可得到结论.
解答:解:当直线的斜率不存在时,直线的方程为x=4,满足题意
因为a=4,b=3,所以双曲线的渐近线方程为y=±
3
4
x,
则过P分别作出两条与渐近线平行的直线即与双曲线只有一个交点;
过点P还可以作一条与左支相切的直线,
故满足条件的直线共有4条.
故答案为:4
点评:本题考查了直线与双曲线有一个公共点的情况,做题时极容易丢平行渐近线的情况,做题时一定要细心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网