题目内容

已知f(x)=2cos2x+
3
sin2x,
(1)求f(x)的周期;
(2)求f(x)的值域;
(3)求f(x)的单调递增区间.
分析:(1)由于f(x)=2cos2x+
3
sin2x=1+cos2x+
3
sin2x=2sin(2x+
π
6
)+1,从而可求f(x)的周期;
(2)利用正弦函数的性质可求f(x)=2sin(2x+
π
6
)+1的值域;
(3)由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)即可求得f(x)的单调递增区间.
解答:解:(1)∵f(x)=2cos2x+
3
sin2x=1+cos2x+
3
sin2x=2sin(2x+
π
6
)+1,
∴其周期T=
2
=π;
(2)∵-1≤sin(2x+
π
6
)≤1,
∴-1≤2sin(2x+
π
6
)+1≤3,即f(x)的值域为[-1,3];
(3)由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)得:kπ-
π
3
≤x≤kπ+
π
6
(k∈Z),
∴f(x)的单调递增区间为[2kπ-
π
2
,2kπ+
π
2
](k∈Z).
点评:本题考查两角和与差的正弦函数,考查正弦函数的周期性、单调性与值域,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网