题目内容
已知f(x)=2cos2x+
sin2x,
(1)求f(x)的周期;
(2)求f(x)的值域;
(3)求f(x)的单调递增区间.
| 3 |
(1)求f(x)的周期;
(2)求f(x)的值域;
(3)求f(x)的单调递增区间.
分析:(1)由于f(x)=2cos2x+
sin2x=1+cos2x+
sin2x=2sin(2x+
)+1,从而可求f(x)的周期;
(2)利用正弦函数的性质可求f(x)=2sin(2x+
)+1的值域;
(3)由2kπ-
≤2x+
≤2kπ+
(k∈Z)即可求得f(x)的单调递增区间.
| 3 |
| 3 |
| π |
| 6 |
(2)利用正弦函数的性质可求f(x)=2sin(2x+
| π |
| 6 |
(3)由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
解答:解:(1)∵f(x)=2cos2x+
sin2x=1+cos2x+
sin2x=2sin(2x+
)+1,
∴其周期T=
=π;
(2)∵-1≤sin(2x+
)≤1,
∴-1≤2sin(2x+
)+1≤3,即f(x)的值域为[-1,3];
(3)由2kπ-
≤2x+
≤2kπ+
(k∈Z)得:kπ-
≤x≤kπ+
(k∈Z),
∴f(x)的单调递增区间为[2kπ-
,2kπ+
](k∈Z).
| 3 |
| 3 |
| π |
| 6 |
∴其周期T=
| 2π |
| 2 |
(2)∵-1≤sin(2x+
| π |
| 6 |
∴-1≤2sin(2x+
| π |
| 6 |
(3)由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
∴f(x)的单调递增区间为[2kπ-
| π |
| 2 |
| π |
| 2 |
点评:本题考查两角和与差的正弦函数,考查正弦函数的周期性、单调性与值域,属于中档题.
练习册系列答案
相关题目