题目内容
已知函数f(x)=| 1 |
| 2 |
| ||
| 2 |
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[
| π |
| 12 |
| π |
| 4 |
分析:利用二倍角公式、两角和的正弦函数化简函数为一个角的一个三角函数的形式
(1)利用周期公式求出函数的周期;
(2)求出2x+
∈[
,
],根据正弦函数的单调性求出函数的最值,写出求函数取得最大值和最小值时的自变量x的值.
(1)利用周期公式求出函数的周期;
(2)求出2x+
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
解答:解:f(x)=
cos2x+
sinxcosx+1=
cos2x+
sin2x+
=
sin(2x+
)+
(1)f(x)的最小正周期T=
=π
(2)∵x∈[
,
]∴2x+
∈[
,
]
∴当2x+
=
,即x=
时,f(x)max=
+
=
当2x+
=
或2x+
=
时,即x=
或x=
时,f(x)min=-
+
=
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 4 |
| ||
| 4 |
| 5 |
| 4 |
| 1 |
| 2 |
| π |
| 6 |
| 5 |
| 4 |
(1)f(x)的最小正周期T=
| 2π |
| 2 |
(2)∵x∈[
| π |
| 12 |
| π |
| 4 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
∴当2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 5 |
| 4 |
| 7 |
| 4 |
当2x+
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 12 |
| π |
| 4 |
| 1 |
| 2 |
| 5 |
| 4 |
| 3 |
| 4 |
点评:本题考查三角函数的化简求值,函数周期性及其求法,三角函数的最值,考查计算能力,是基础题.
练习册系列答案
相关题目