题目内容
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=1-
bn.
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求证cn+1≤cn.
| 1 |
| 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求证cn+1≤cn.
(1)∵a3,a5是方程x2-14x+45=0的两根,且数列{an}的公差d>0,
∴a3=5,a5=9,公差d=
=2.
∴an=a5+(n-5)d=2n-1.
又当n=1时,有b1=S1=1-
b1,∴b1=
.
当n≥2时,有bn=Sn-Sn-1=
(bn-1-bn),∴
=
(n≥2).
∴数列{bn}是等比数列,b1=
,q=
.
∴bn=b1qn-1=
.
(2)由(Ⅰ)知cn=anbn=
,cn+1=
,
∴cn+1-cn=
-
=
≤0.
∴cn+1≤cn.
∴a3=5,a5=9,公差d=
| a5-a3 |
| 5-3 |
∴an=a5+(n-5)d=2n-1.
又当n=1时,有b1=S1=1-
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,有bn=Sn-Sn-1=
| 1 |
| 2 |
| bn |
| bn-1 |
| 1 |
| 3 |
∴数列{bn}是等比数列,b1=
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=b1qn-1=
| 2 |
| 3n |
(2)由(Ⅰ)知cn=anbn=
| 2(2n-1) |
| 3n |
| 2(2n+1) |
| 3n+1 |
∴cn+1-cn=
| 2(2n+1) |
| 3n+1 |
| 2(2n-1) |
| 3n |
| 8(1-n) |
| 3n+1 |
∴cn+1≤cn.
练习册系列答案
相关题目