题目内容
(2011•盐城模拟)已知数列{an}满足[2+(-1)n+1]an+[2+(-1)n]an+1=1+(-1)n•3n,n∈N*,a1=2.
(Ⅰ)求a2,a3的值;
(Ⅱ)设bn=a2n+1-a2n-1,n∈N*,证明:{bn}是等差数列;
(Ⅲ)设cn=an+
n2,求数列{cn}的前n项和Sn.
(Ⅰ)求a2,a3的值;
(Ⅱ)设bn=a2n+1-a2n-1,n∈N*,证明:{bn}是等差数列;
(Ⅲ)设cn=an+
| 1 | 2 |
分析:(Ⅰ)将n=1,2分别代入[2+(-1)n+1]an+[2+(-1)n]an+1=1+(-1)n•3n,即可求a2,a3的值;
(Ⅱ)在条件中,用2n代换n,用2n-1代换n,两式相减,可得bn=4n-1,从而可得{bn}是等差数列;
(Ⅲ)求得a2k-1=a1+(a3-a1)+…+(a2k-1-a2k-3)=(k-1)(2k-1)+2,a2k=-6k2+3k-5,从而可得c2k-1=-4k2-5k+
,c2k=-4k2+3k-5,则c2k-1+c2k=-2k-
,进而可得结论.
(Ⅱ)在条件中,用2n代换n,用2n-1代换n,两式相减,可得bn=4n-1,从而可得{bn}是等差数列;
(Ⅲ)求得a2k-1=a1+(a3-a1)+…+(a2k-1-a2k-3)=(k-1)(2k-1)+2,a2k=-6k2+3k-5,从而可得c2k-1=-4k2-5k+
| 7 |
| 2 |
| 3 |
| 2 |
解答:(Ⅰ)解:因为数列{an}满足[2+(-1)n+1]an+[2+(-1)n]an+1=1+(-1)n•3n,(*),且a1=2,
所以将n=1代入(*)式,得3a1+a2=-2,故a2=-8
将n=2代入(*)式,得a2+3a3=7,故a3=5
(Ⅱ)证明:在(*)式中,用2n代换n,得[2+(-1)2n+1]a2n+[2+(-1)2n]a2n+1=1+(-1)2n•6n,
即a2n+3a2n+1=1+6n ①,
再在(*)式中,用2n-1代换n,得[2+(-1)2n]a2n-1+[2+(-1)2n-1]a2n=1+(-1)2n-1•(6n-3),
即3a2n-1+a2n=4-6n②,
①-②,得3(a2n+1-a2n-1)=12n-3,即bn=4n-1
∴bn+1-bn=4,
∴{bn}是等差数列;
(Ⅲ)解:因为a1=2,由(Ⅱ)知,a2k-1=a1+(a3-a1)+…+(a2k-1-a2k-3)=(k-1)(2k-1)+2 ③,
将③代入②,得3(k-1)(2k-1)+6+a2k=4-6k,即a2k=-6k2+3k-5
所以c2k-1=a2k-1+
(2k-1)2=-4k2-5k+
,c2k=a2k+
(2k)2=-4k2+3k-5,
则c2k-1+c2k=-2k-
,
所以S2k=(c1+c2)+(c3+c4)+…+(c2k-1+c2k)=-k2-
k
所以S2k-1=S2k-c2k=(-k2-
k)-(-4k2+3k-5)=3k2-
+5
故Sn=
.
所以将n=1代入(*)式,得3a1+a2=-2,故a2=-8
将n=2代入(*)式,得a2+3a3=7,故a3=5
(Ⅱ)证明:在(*)式中,用2n代换n,得[2+(-1)2n+1]a2n+[2+(-1)2n]a2n+1=1+(-1)2n•6n,
即a2n+3a2n+1=1+6n ①,
再在(*)式中,用2n-1代换n,得[2+(-1)2n]a2n-1+[2+(-1)2n-1]a2n=1+(-1)2n-1•(6n-3),
即3a2n-1+a2n=4-6n②,
①-②,得3(a2n+1-a2n-1)=12n-3,即bn=4n-1
∴bn+1-bn=4,
∴{bn}是等差数列;
(Ⅲ)解:因为a1=2,由(Ⅱ)知,a2k-1=a1+(a3-a1)+…+(a2k-1-a2k-3)=(k-1)(2k-1)+2 ③,
将③代入②,得3(k-1)(2k-1)+6+a2k=4-6k,即a2k=-6k2+3k-5
所以c2k-1=a2k-1+
| 1 |
| 2 |
| 7 |
| 2 |
| 1 |
| 2 |
则c2k-1+c2k=-2k-
| 3 |
| 2 |
所以S2k=(c1+c2)+(c3+c4)+…+(c2k-1+c2k)=-k2-
| 5 |
| 2 |
所以S2k-1=S2k-c2k=(-k2-
| 5 |
| 2 |
| 11k |
| 2 |
故Sn=
|
点评:本题考查数列递推式,考查等差数列的证明,考查数列的求和,正确运用数列递推式是关键,综合性强,难度较大.
练习册系列答案
相关题目